

Designing a Dichroic Filter As Part of a Microwave Camera to Study ECR Ion Sources

Sarah Peery, L. E. Henderson, Dr. Carl A. Gagliardi

AM

Outline

- *Scientific Motivations
- Camera overview
- *Initial design
- * MEEP
- Second design
- Future work

ECR Ion Sources

- Works thru ECR surprisingly enough
- e⁻ confined by solenoid and hexapole magnets
- $\ensuremath{\bigstar}$ Undergo cyclotron motion with

 $\omega = \frac{eB}{\gamma m_e}$

- \clubsuit Excited by microwaves
- *Ionize neutral atoms

∻yay

ECR Ion Sources

- $\ensuremath{\bigstar}\ensuremath{\operatorname{Very}}\xspace$ Important
- Plasma dynamics are not well understood
- $\ensuremath{\mathbf{\star}}$ Could be an electrostatic well
- More efficiency in extracting high charge states → higher power in beam

TEXAS A&M

Electron Cyclotron Emission Camera Optical Train

Camera

 Will image electron cyclotron emission spectrum
 15-65 GHz

 \clubsuit Does not disrupt plasma

- Microwaves extracted from ECR ion source
 - *Passed through filter set
 - Added know oscillator signals from Gunn diodes
 - Sent to antenna array, superheterodyne receiver
 - Mixed and digitized

Dichroic Filter Set

- $\ensuremath{\$}$ Selects bandpass of 10GHz
- Static filters reflect specific frequencies
- Switchable filters reflect when on
 - Transmit signal to beam dump when off

Static Filter Design

- High Pass filters
- *Single Aperture
- $\ensuremath{\boldsymbol{\ast}}$ High passes stack to select passbands

Initial Design

Acts as a high pass with a lower frequency bandpass

 $\$ This is what the diodes remove

- \bigstar Stacks, but backwards
- *Bandgaps are not reflected
- $\boldsymbol{\ast}$ This design eliminates low frequency noise

MEEP

- Uses the Finite Difference Time Domain method
- Tested parameters to get transmission spectrum
 Found no good match
- $\ensuremath{\$\xspace{-1.5}}$ Resonances too broad
- No bandgap
- bad behavior comes from complicated geometry

Second Design

- Simplified the design to just the inner ring
 - Diodes break ring and stop resonance
- *Acts as a notch filter
- Bandgaps still stack

Future Work

Design of the camera is mostly done
A design for the dichroic filters has been found
Dichroic filters still need to be optimized
Fine tuning done with a hill climbing algorithm
Fabrication should be complete by summer 2019

Acknowledgements

Ethan Henderson and Carl Gagliardi
REU NSF Grant PHY-1659847

References

- Courtesy Cern Courier and R. Racz, S. Biri, and J. Palinkas. "ECR plasma photographs as a plasma diagnostic"
- Griffiths, Davis J. Introduction to Electrodynamics, Cambridge (1998).
- L. Zhao, B. Cluggish, and I. Bogatu, in Proceedings of ECRIS08 (Chicago, IL USA, 2008).
- R. Geller, Electron Cyclotron Resonance Ion Sources and ECR Plasmas (CRC Press, 1996).
- *G. Beke, Radiation Processes in Plasmas (John Wiley and Sons, Inc., 1966).
- *X. Han et al., Rev. Sci. Instrum. 85, 073506 (2014).

